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Abstract: The “memory wall”  of  traditional  von Neumann computing systems severely restricts  the efficiency of  data-intensive
task  execution,  while  in-memory  computing  (IMC)  architecture  is  a  promising  approach  to  breaking  the  bottleneck.  Although
variations and instability in ultra-scaled memory cells seriously degrade the calculation accuracy in IMC architectures,  stochast-
ic  computing (SC) can compensate for these shortcomings due to its  low sensitivity to cell  disturbances.  Furthermore,  massive
parallel computing can be processed to improve the speed and efficiency of the system. In this paper, by designing logic func-
tions in NOR flash arrays,  SC in IMC for the image edge detection is  realized,  demonstrating ultra-low computational  complex-
ity  and  power  consumption  (25.5  fJ/pixel  at  2-bit  sequence  length).  More  impressively,  the  noise  immunity  is  6  times  higher
than  that  of  the  traditional  binary  method,  showing  good  tolerances  to  cell  variation  and  reliability  degradation  when  imple-
menting massive parallel computation in the array.
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 1.  Introduction

In  traditional  von  Neumann  architecture,  data  is  fre-
quently  transferred  between  the  processing  unit  and  the
memory  unit,  which  causes  significant  power  consumption
and seriously limits processing efficiency. In-memory comput-
ing  (IMC),  wherein  memory  units  designed  with  the  capabil-
ity  to  store  data  and  execute  computational  tasks  simultan-
eously,  has  been  proposed  as  a  promising  approach  to  solve
this  issue  and  break  the  “memory  wall”.  Recently,  many  im-
pressive  IMCs  have  been  reported  by  using  commercial
memories  (SRAM,  DRAM,  flash)  and  emerging  memories
(ReRAM,  PRAM,  etc.)[1−3].  For  data-intensive  computing  tasks,
it is necessary to construct a large memory array for large-mat-
rix  computation,  which  means  that  the  current  of  each
memory  cell  has  to  be  low  so  that  the  accumulated  currents
will  not  exceed  the  capability  of  the  sensing  amplifier  (SA)[3].
At the same time, the leakage currents in the array should be
suppressed  to  reduce  power  consumption.  As  a  non-volatile
memory,  flash  memory  has  matured  the  fabrication  process
with good reliabilities,  abilities  to construct  large memory ar-
rays, and good compatibility with peri-circuits. All these make
flash memory a promising candidate to meet the stringent re-
quirements of data-intensive tasks.

Stochastic computing (SC) is one type of approximate cal-
culation,  which  is  an  effective  approach  for  data-intensive
tasks.  SC  is  implemented  based  on  probabilistic  calculations
with  inherent  tolerance  for  noise,  as  shown  in Fig.  1(a).  Be-
sides,  SC  shows  great  potential  to  simplify  the  hardware  cir-
cuits and allows massively parallel computations towards real-
izing complex calculations in simple logic circuits[4]. It is anticip-
ated  that  SC  could  be  utilized  in  applications  requiring  high-
speed processing for single-target detection.

So far,  most works are more focused on computing com-
plexity or merely accuracy[5], while the studies on the tradeoff
of  these  two  contradictory  aspects  are  still  limited[6].  In  this
work, a novel IMC architecture is designed to perform SC pro-
cess  for  image  edge  detection,  which  provides  an  effective
solution  to  address  the  concerns  of  power  consumption  and
accuracy simultaneously.

In this work, a flash-based high-efficiency and high-preci-
sion SC strategy has been proposed, which can effectively re-
duce  computational  complexity  and  power  consumption
while  retaining  accuracy  and  interference  immunity.  Massive
parallel  operations  in  a  large  memory  array  have  also  been
achieved by a novel and simple IMC architecture.

 2.  Implementing IMC by flash memory

The  flow  chart  of  the  method  is  shown  in Fig.  1(e).  After
the pre-processing of an image, the generated stochastic num-
bers (SNs) input to the memory array, can be applied in the im-
age edge detection.
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 2.1.  Pre-processing

SC  with  longer  SNs  improves  computing  accuracy,  but
power  consumption  and  delay  will  increase.  To  address  this
concern,  the  image  can  be  pre-processed  by  the  Otsu  al-
gorithm before computing[7].  Here we adopted the extended
2D  Otsu  to  segment  the  pixel  value  of  the  image  into  three
levels.  The  pixel  values  of  these  three  levels  are  set  to  0,  0.5,
and  1.  That  is,  each  pixel  value  of  this  image  is  represented
by  the  SNs  with  the  probability  value  of  0,  0.5,  and  1.  By  this
means,  only  SNs  with  50%  probability  needed  to  be  com-
puted. The overhead of a random number generator (RNG) is
greatly reduced, thus decreasing the computational complex-
ity. Besides, SNs with a 50% probability are easier to be gener-
ated by the true random number generator (TRNG),  eliminat-
ing  the  computational  trouble  caused  by  correlation  terms
among SNs. Although power consumption and computation-
al  complexity are reduced, the simulation results show that it
can still  maintain high computational accuracy. Therefore, the
required  SNs  are  generated  according  to  the  values  after
three-valued segmentation processing.

 2.2.  Logic operations in NOR flash

After  image  processing  and  SN  generating,  the  logic  in
memory  operation  can  be  implemented  by  NOR  flash
memory.  Logic  operations  in  IMC  are  based  on  Ohm's  law

and the Kirchhoff's law, which utilizes the cel0-ls’ characterist-
ics  and  the  designed  array  to  perform  calculations. Fig.  2(a)
shows  the  basic  structure  of  the  flash  cells,  and Fig.  2(b)
shows  the  basic  current  curves.  In  this  work,  we  choose  the
sub-saturation  region  as  the  operation  region,  and  the
source-line current (ISL) can be expressed by Eq. (1), 

ISL = w(VG − Vth)VD, (1)

where w is  a  constant  referring  to  the  feature  of  devices; VD,
VG,  and Vth represent  the  drain  bias,  the  gate  bias,  and  the
cell  threshold  voltages,  respectively. Vth in  each  memory  cell
can  be  tuned  by  using  erasing  and  programming.  The  entire
computational  process  is  implemented  in  a  large  array,  and
the  number  of  rows  enabled  in  the  array  is  related  to  the
length  of  the  input  sequence.  In  this  way,  logic  operations
can be implemented in the flash memory array.  For example,
AND  operation  can  be  accomplished  by  mapping  in1 to VG1,
and  mapping  in2 to Vth1,  thus ISL can  represent  the  logic  res-
ults. Only when VG1 and Vth1 are both 1, the result is 1. Other lo-
gic operations also can be realized by combing device proper-
ties and the design of flash arrays.

Along  with  the  memory  scaling,  the  variations  of  cells
will  have  a  much  larger  impact  on  the  accuracy  of  calcula-
tions[8].  Firstly,  the  work  regions  should  be  optimized  be-
cause  large VD (the  saturation  region)  will  result  in  high

 

Fig. 1. (Color online) (a) Comparison between conventional and SC methods, SNs length = N bits. (b) Region of the image. (c) The stochastic com-
putational element to realize image detection algorithmic in logic circuits. (d) Scaled addition realized by the OR gate, scaled subtraction, and ab-
solute value calculation realized by the XOR gate. (e) The data processing flow chart in the proposed method.

 

Fig. 2. (Color online) (a) The NOR flash architecture for logic operation. (b) I–V curve for NOR flash array. (c) Memory window degradation by P/E
cycling. (d) Read current fluctuations can be observed caused by RTN.
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power  consumption  while  low VD (the  linear  region)  will  suf-
fer  from serious variation effects.  Secondly,  the repeated cyc-
ling  will  inevitably  cause  memory  window  degradation  due
to Vth shifts,  as  shown  in Fig.  2(c).  In  addition,  the  read  noise
will  be  serious,  such  as  the  enhanced  random  telegraph
noise (RTN) that is caused by the traps in the tunneling oxide.
For  one  single  trap,  there  are  two  current  levels  at  the  fixed
read  conditions,  and  the  current  fluctuation  is  shown  in
Fig.  2(d).  Scaling  the  cell  size  will  further  increase  the  fluctu-
ations,  leading  to  larger  read  current  instability.  All  these
should  be  well  investigated  for  identifying  the  noise  toler-
ance  boundary  of  the  designed  memory  array.  In  this  work,
we  take  the  sub-saturation  region  (VD =  1  V)  to  implement
the  calculations  in  IMC  to  suppress  the  impacts  of VD vari-
ations and guarantee low power consumption.

 2.3.  Image edge detection by SC

The  Roberts  cross  kernel[9] is  one  of  the  most  common
edge detection operators that can be converted into simple lo-
gic operations in SC. It is easy to be adopted in IMC to imple-
ment  low-precision  and  data-intensive  applications.  The
Roberts  cross  kernel  consists  of  two  2  ×  2  conventional  ker-
nels. The magnitude result is described as Eq. (2) when consid-
ering the 3 × 3 region in Fig. 1(b). 

S (i, j) ≈ . (∣Zi,j − Zi+,j+∣ + ∣Zi+,j − Zi,j+∣) , (2)

where S(i,j)  and Zi,j represent  the  results  of  edge  detection
and  the  pixel  value  of  the  original  image  at  (i,j),  respectively.
According to  Eq.  (2),  we need to  convert  the  scaled addition,
the  scaled subtraction,  and the  absolute  value  calculation in-
to logic circuits respectively[4]. The scaled addition is implemen-
ted  by  the  multiplexer.  In  addition,  it  also  can  be  done  by
the OR gate. The scaled subtraction and absolute value calcula-

tion  can  be  implemented  by  the  XOR  gate,  as  shown  in Figs.
1(c) and 1(d).

As the key of the proposed method, the SNs are mapped
into  the  NOR  flash  memory  array  to  implement  the  Roberts
cross  kernel  in  Eq.  (1).  After  XOR  operations  in  | Zi,j – Zi+1,j+1 |
and  | Zi+1,j – Zi,j+1 |,  the  OR  logical  operation  is  used  as  the
way to execute the scaled addition.

For  more  detail,  we  take  the  example  of  the  sequence
length of  2-bit.  As  shown in Fig.  1(e),  after  pre-processing, p1

and p2 are  the  results  after  processing  and  represent  the
pixel  values Zi,j, Zi+1,j+1,  respectively. P1 (p11, p12)  and P2 (p21,
p22) are the sequences generated by TRNG. First, split and com-
bine P1 and P2 to P1’  (p11, p21) and P2’  (p12, p22). Then, sort the
sequences  in ascending  order  to  the  new  sequences, X1 (x11,
x12), X2 (x21, x22).  The above two steps are the process of reor-
ganization  and  sorting,  and X1 and X2 are  the  results.  Finally,
X1 and X2 are mapped to the memory array in Fig. 2(a) to com-
plete the logical calculation. For the XOR operation, the map-
ping  rules  refer  to Table  1.  The  first  element  of X1 (x11)  is
coded to the value of VG1,  and the second element of X1 (x12)

 

Fig. 3. (Color online) (a) BER comparison between the conventional method and SC method when the signal noise is considered. (b) Effects of sim-
ultaneous offset of device parameters VG/VD/Vth on BER. (c) RTN effects are ignorable on BER. (d) Add 10% noise in (b). (e) Under different VG/VD

conditions, effects of simultaneous 10% drift of three device parameters on BER(N = 2). (f) Effects of Vth shifts.

Table 1.   XOR truth table (VD = 1 V).

xi1 xi2 VG (V) Vth (V) Device state Logical value

0 0 3 4 CLOSE 0
0 1 3 2 Sub-saturation 1
1 1 0 2 CLOSE 0

Table 2.   OR truth table (VG = 3 V, VD = 1 V).

xi2 Vth (V) Device state Logical value

0 4 CLOSE 0
1 2 Sub-saturation 1
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is  coded  to  the  value  of Vth1.  We  can  get  the  result  s1 = p11

XOR p21 according to the read current ISL. Similar to the OR op-
eration, the mapping rules refer to Table 2. X1 (x12) is represen-
ted  by  the  value  of Vth51. X2 (x22)  is  represented  by  the  value
of Vth52.  The value of OR operation is  determined by the read
current ISL.  As  mentioned  above,  | Zi,j – Zi+1,j+1 |  = S1 (s1,s2),
and | Zi+1,j – Zi,j+1 | = S2 (s3, s4) can be implement by XOR opera-
tion, and S = S1 + S2 is calculated by OR operation.

 3.  Results and discussions

In  this  paper,  a  grayscale  image  with  256  ×  256  pixels  is
used  for  the  evaluation.  The  data  is  measured  from  flash
memory  of  65  nm  NOR  flash  technology.  The  noise-im-
munity  performance,  device  variation,  and  power  consump-
tion have been comprehensively investigated.

 3.1.  Noise-immunity performance

As  shown  in Fig.  3(a),  different  levels  of  interference
noise  (bit  flipping)  are  added  to  the  SNs  generation  stage
and  then  compared  to  the  noise-free  results.  It  is  observed
that  noise  immunity  is  positively  correlated  with  the  se-
quence length. With the addition of 50% noise power, the bit
error  rate  (BER)  of  the  SC  implementation  with  SNs  length  of
4 bits is  only 1/6 of that of  the conventional implementation,
showing the great noise-immunity performance.

 3.2.  Impact of device variations

The variations of device parameters also influence SC res-
ults.  Here,  variations  are  simulated  by  considering  the  shifts
from VG, Vth, and VD.

As  shown  in Fig.  3(b),  by  including  20%  simultaneous
drifts of three parameters at VG = 3 V, VD = 1 V,  BER degrada-
tion  is  only  0.7%  in  the  case  of  4-bit  SNs  length.  By  adding
RTN noise at this condition, it  is found that it  has a negligible
effect  on computational  results.  The change in  BER is  around
0.01%  in Fig.  3(c).  Then,  we  evaluate  BER  with  the  effect  of
10% bit-flip noise and the simultaneous presence of paramet-
er offsets in Fig.  3(d).  The accuracy of  the calculation remains
stable  at  drift  <  10%.  The  effects  of VG and Vth variation  are
summarized in Fig. 3(e). Benefiting from the sub-saturation re-
gion, VD drift  (up  to  ~20%)  does  not  affect  BER.  In  addition,
considering read disturb,  the overall  rightward bias of Vth oc-
curs  during  iterations,  as  shown  in Fig.  3(f).  In Vth right  offset
to a certain extent, the device will change from the sub-satura-
tion  region  to  the  saturation  region,  and  the  magnitude  of

the current will change. To avoid this degradation, we can ad-
just  the Vth according  to  the  device  characteristics  and  re-
duce  its  effects  on  BER.  As  shown  in Fig.  4(a),  the  simulation
results  indicate  that  different VG and VD also  cause  different
BER. In this work, the operation biases are set as VG = 3 V and
VD = 1 V. According to different flash technologies, these para-
meters should be optimized to minimize BER.

 3.3.  Power consumption

The  implementation  of  SC  in  IMC  architecture  has  a  very
high  degree  of  parallelism  compared  to  conventional  al-
gorithms.  It  brings  better  power  performance  with  reduced
complexity.  Power  consumption  is  related  to  many  factors,
such as the size of image matrices, SN length, and the bias con-
ditions.  In Fig.  4(b),  power  consumption  is  positively  correl-
ated  with  the  SNs'  length N and  correlated  with  the VG and
VD, showing power consumption is also an important paramet-
er  when  we  choose  a  suitable  working  situation  for  the  sys-
tem.  The  power  consumption  of  the  proposed  method  is  as
low as 25.5 and 47.5 fJ/pixel when the sequence length is set
to  be N =  2  and N =  4.  It  should  be  noted,  we  just  qualified
the  power  consumption  brought  by  read  current,  and  it  is
necessary  to  reload  the  flash  array  when  the  new  images
come  in,  thereby,  the  reloading  cost  exists.  For  reference,  at
sub-100-ns  pulse  width  program  or  erase  operation[10],  the
power dissipation can be controlled under 20 pJ/bit (42 pJ/bit)
in  the  program (erase)  operations,  respectively.  These  can be
minimized by further optimizations on the string currents.  As
for the hardware resource usage, it  is  related to SNs length N
and  image  size.  For  example,  the  256  ×  256  pixels  point  im-
age occupies a memory size of 32 KB (N = 2) without any itera-
tion,  at  least  30  times  less  than  traditional  methods  (2T-
1R)[11].

In  the  reported  work[12],  it  has  multiple  steps  to  do  XOR
when  operating  in  the  memory  array,  while  the  work  in
Ref.  [11]  needs  multiple  SLIM  bit  cells  (2T-1R  in  NOR  flash)
structures which has a larger hardware area cost.  As for com-
parisons, in this work, our method simplifies the logic computa-
tion  (only  one  step  for  XOR  operation)  and  realizes  parallel
computations,  which  is  more  suitable  for  the  application  in
IMC  architectures.  Furthermore,  compared  with  other  works
by  implementing  logic  calculation  in  RRAM,  flash  can  realize
much  larger  arrays  and  it  has  a  mature  technology  to  sup-
port large-scale operations[13, 14].

 

Fig. 4. (Color online) (a) BER and (b) power consumption at various VG/VD voltages when N = 2.
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 4.  Conclusion

In  this  paper,  SC in  IMC for  image edge detection is  real-
ized  by  designing  logic  functions  in  NOR  flash  arrays.  On  the
one  side,  with  respect  to  the  standard  architecture,  our
strategy  can  significantly  improve  the  performances,  such  as
simpler  computational  complexity,  lower  power  consump-
tion (25.5 fJ/pixel and 32 KB in case of 2-bit sequence length),
and reduced occupancy of the hardware resources. On the oth-
er  side,  with respect  to  the standard IMC or  SC solutions,  our
method has optimized the traditional SC algorithm by combin-
ing SC and IMC to lower the computational complexity and im-
prove the parallelism. Simultaneously, it brings excellent anti-
interference properties.
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